Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2818347.v1

ABSTRACT

Deep learning faces a significant challenge wherein the trained models often underperform when used with external test data sets. This issue has been attributed to spurious correlations between irrelevant features in the input data and corresponding labels. This study uses the classification of COVID-19 from chest x-ray radiographs as an example to demonstrate that the image contrast and sharpness, which are characteristics of a chest radiograph dependent on data acquisition systems and imaging parameters, can be intrinsic shortcuts that impair the model’s generalizability. The study proposes training certified shortcut detective models that meet a set of qualification criteria which can then identify these intrinsic shortcuts in a curated data set.


Subject(s)
COVID-19 , Mixed Connective Tissue Disease
2.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2210.02189v1

ABSTRACT

Purpose: To answer the long-standing question of whether a model trained from a single clinical site can be generalized to external sites. Materials and Methods: 17,537 chest x-ray radiographs (CXRs) from 3,264 COVID-19-positive patients and 4,802 COVID-19-negative patients were collected from a single site for AI model development. The generalizability of the trained model was retrospectively evaluated using four different real-world clinical datasets with a total of 26,633 CXRs from 15,097 patients (3,277 COVID-19-positive patients). The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance. Results: The AI model trained using a single-source clinical dataset achieved an AUC of 0.82 (95% CI: 0.80, 0.84) when applied to the internal temporal test set. When applied to datasets from two external clinical sites, an AUC of 0.81 (95% CI: 0.80, 0.82) and 0.82 (95% CI: 0.80, 0.84) were achieved. An AUC of 0.79 (95% CI: 0.77, 0.81) was achieved when applied to a multi-institutional COVID-19 dataset collected by the Medical Imaging and Data Resource Center (MIDRC). A power-law dependence, N^(k )(k is empirically found to be -0.21 to -0.25), indicates a relatively weak performance dependence on the training data sizes. Conclusion: COVID-19 classification AI model trained using well-curated data from a single clinical site is generalizable to external clinical sites without a significant drop in performance.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL